Раўнаньне

Зьвесткі зь Вікіпэдыі — вольнай энцыкляпэдыі
Перайсьці да: навігацыі, пошуку
Першае друкарскае зьяўленьне знаку роўнасьці ў кнізе Робэрта Рэкарда ў 1557 годзе (запісана раўнаньне 14x + 15 = 71)

Раўнаньнероўнасьць выгляду f(x, ...)=g(x, ...) або f(x, ...)=0, дзе f ды gфункцыі (у агульным выпадку — вэктарныя) аднаго ці некалькі аргумэнтаў, а таксама задача па знаходжаньні такіх значэньняў аргумэнтаў, пры якіх дасягаецца гэтая роўнасьць. На магчымыя значэньні аргумэнтаў могуць быць накладзеныя дадатковыя ўмовы.

«Аргумэнты» (часам называюцца «зьменнымі») у выпадку раўнаньня называюць «невядомымі». Значэньні невядомых, пры якіх раўнаньне становіцца роўнасьцю — каранямі раўнаньня. Раўнаньне можа мець адзін, некалькі або бясконца шмат каранёў, а можа ня мець кораня наогул.

Часам матэматычная задача накладвае абмежаваньні на мноства, якому павінны належаць рашэньні раўнаньня, напрыклад, дыяфантавыя раўнаньні патрабуюць толькі цэлалікавага рашэньня. Існаваньне і колькасьць каранёў раўнаньня таксама могуць залежаць ад мноства: напрыклад, раўнаньне ня мае рэчаісных рашэньняў, але мае камплексныя рашэньні.

Значэньні невядомых, пры якіх гэтая роўнасьць дасягаецца, называюцца разьвязкамі або каранямі дадзенага раўнаньня. Пра карані гавораць, што яны задавальняюць дадзенаму раўнаньню.

Разьвязаць раўнаньне азначае знайсьці мноства ўсіх яго разьвязак (каранёў).

Прыклады раўнаньняў[рэдагаваць | рэдагаваць крыніцу]

  • x=1
  • 1/x=1/x

Глядзіце таксама[рэдагаваць | рэдагаваць крыніцу]

Вонкавыя спасылкі[рэдагаваць | рэдагаваць крыніцу]

  • EqWorld зьмяшчае інфармацыю аб рашэньнях розных клясаў матэматычных раўнаньняў.(анг.)
  • EquationSolver. Вэб-старонка, якая можа вырашыць раўнаньні і сыстэмы лінейных альгебраічных раўнаньняў.(анг.)