Складаньне

Зьвесткі зь Вікіпэдыі — вольнай энцыкляпэдыі
Перайсьці да: навігацыі, пошуку
3 + 2 = 5

Складаньне — бінарная апэрацыя, якая дазваляе аб’яднаць два аб’екты.

Апэрацыя складаньня звычайна пазначаецца знакам + (плюс). У асобных разьдзелах матэматыкі складаньне таксама пазначаецца іншымі спэцыфічнымі для гэтага абсягу сымбалямі ( \or ,  \cup ,  \sum , і г.д.)

Апэранды апэрацыі складаньня завуцца складнікамі, вынік — сумай. Адваротная да складаньня апэрацыя завецца адыманьнем.

Агульныя ўласьцівасьці апэрацыі складаньня[рэдагаваць | рэдагаваць крыніцу]

Любую бінарную апэрацыя, яка задавальняе наступным умовам у матэматыцы можна назваць складаньнем:

Ад перастаноўкі складнікаў сума не зьмяняецца.

Азначэньне складаньня[рэдагаваць | рэдагаваць крыніцу]

Складаньне натуральных лікаў[рэдагаваць | рэдагаваць крыніцу]

Для таго, каб да натуральнага ліку m дадаць натуральны лік n трэба павялічыць лік m на адзінку n разоў.

Напрыклад,

5 + 4 = 5 + 1 + 1 + 1 + 1 = 6 + 1 + 1 + 1 = 7 + 1 + 1 = 8 + 1 = 9

Альгарытм складаньня шматзначных натуральных лікаў[рэдагаваць | рэдагаваць крыніцу]

Cкладаньне шматзначных лікаў у пазыцыйнай сыстэме лічэньня можна зьвесці да складаньня адназначных лікаў шляхам паразраднага складаньня зь пераносам, гэта значыць складаньня аднолькавых разрадаў складнікаў як асобных лікаў. Вынік складаньня разрадаў будзе значэньнем гэтага ж разраду сумы; калі ж сума разрадаў складае двухзначны лік, то бярэцца малодшы разрад, а старэйшы пераносіцца ў наступны (па нумары) разрад, гэта значыць дадаецца да сумы наступных разрадаў.

Такім чынам, складаньне шматзначных лікаў зьдзяйсьняецца паводле наступнага альгарытму:

  1. Скласьці наймалодшыя разрады (адзінкі). Калі вынік складаньня не перавышае 9, гэта складзе наймалодшы разрад сумы. Калі ж вынікам складаньня атрымаўся двухзначны лік, то другая (наймалодшая) лічба вызначае колькасьць адзінак у суме, а першая пераносіцца ў старэйшы разрад (дзясяткі).
  2. Скласьці наступныя разрады (дзясяткі); калі быў перанос з папярэдняга разраду, дадаць яго да сумы. Вызначыць другую лічбу сумы, а таксама неабходнасьць пераносу гэтак жа, як і першага разраду (п.1);
  3. Паўтараць п.2, рухаючыся ад малодшых разрадаў да старэйшых (справа налева), пакуль ня будуць складзеныя ўсе разрады складнікаў.

Калі разраднасьць складнікаў не супадае, то ў разрадах меншага складніка, якіх не хапае, ставяцца нулі.

Пры ручным складаньні лікі для зручнасьці запісваюць адзін пад адным, так, каб аднолькавыя разрады апынуліся ў адным слупку. Адзінку, якая пераносіцца ў старэйшы разрад, запісваюць над першым складнікам або проста запамінаюць.

Напрыклад,

1 1 1 1
+ 9 7 5 2 6 3 4
4 5 4 1 8 2
1 0 2 0 6 8 1 6

Такое складаньне завецца складаньнем «у слупок». Гэтак жа можна скласьці тры ці болей лікаў. У такім выпадку пераносіцца ў наступны разрад можа ня толькі 1, а і большы лік. Напрыклад,

1 2 1 3
+ 5 7 0 8
1 7
6 5 7
7 6 6 9
1 4 0 3 1

Складаньне цэлых лікаў[рэдагаваць | рэдагаваць крыніцу]

Складаньне дадатных цэлых лікаў аналягічнае складаньню натуральных лікаў.

Калі сярод складнікаў прысутнічаюць адмоўныя лікі, складаньне можна зьвесьці да складаньня або адыманьня дадатных лікаў. Менавіта,

  • каб скласьці два адмоўныя лікі, трэба скласьці іх модулі; вынік узяць са знакам «мінус»
  • каб скласьці дадатны лік з адмоўным, трэба ад модуля большага (па модулі) ліку адняць модуль меншага; вынік узяць са знакам ліку, што мае большы модуль.

Напрыклад,

−22 + (−17) = −(22 + 17) = −39
−14 + 40 = 40 −14 = 26
23 + (−27) = −(27 − 23) = −4

Гэтыя правілы вынікаюць з таго, што сума супрацьлеглых лікаў складае нуль:

a + (−a) = 0

Таму

a + b = a + b − 0 = a + b − (b + (−b)) = a −(−b).

Гэта значыць, складаньне можна замяніць адыманьнем, зьмяніўшы знак другога складніка на супрацьлеглы. І наадварот, адыманьне можна замяніць складаньнем, зьмяніўшы на супрацьлеглы знак аднімніка.

Складаньне ліку 0 (нуль) зь любым іншым цэлым лікам не зьмяняе яго. Напрыклад,

5 + 0 = 5

Складаньне рацыянальных лікаў[рэдагаваць | рэдагаваць крыніцу]

Для складаньня рацыянальных лікаў перш за ўсё неабходна прывсьці іх да агульнага назоўніка, а потым скласьці зь лічнікам, беручы агульны назоўнік за назоўнік сумы.

Напрыклад,

 \frac{1}{3} + \frac{1}{2} = \frac{2}{6} + \frac{3}{6} = \frac{5}{6}

Складаньне ірацыянальных лікаў[рэдагаваць | рэдагаваць крыніцу]

Кожны ірацыянальны лік зьяўляецца мяжой пэўнай пасьлядоўнасці рацыянальных набліжэньняў. Калі ірацыянальны лік  a = \lim_{n\rightarrow \infty} a_n, а ірацыянальны лік  b = \lim_{n\rightarrow \infty} b_n , то

 a+b  =  \lim_{n\rightarrow \infty} (a_n + b_n)

Складаньне камплексных лікаў[рэдагаваць | рэдагаваць крыніцу]

Пры складаньни камплексных лікаў асобна складаюцца рэчаісная і зданьнёвая часткі

 z_1 + z_2 = (x_1 + x_2) + i (y_1 + y_2)\,

або

 (x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2) \,

Складаньне вэктараў[рэдагаваць | рэдагаваць крыніцу]

Для складаньня вэктараў, азначаных у вэктарнай прасторы з базісам неабходна скласьці іх кампанэнты

\ (a_1, a_2, \ldots, a_n) + (b_1, b_2, \ldots, b_n ) = (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n )

Складаньне матрыц[рэдагаваць | рэдагаваць крыніцу]

Можна складаць матрыцы, якія маюць аднолькавую колькасьць радкоў і слупкоў. Сума такіх матрыц мае тую ж самую колькасьць радкоў і слупкоў, а кожны элемэнт матрыцы сумы зьяўляецца сумай элемэнтаў матрыц-складнікаў. Напрыклад,


  \begin{bmatrix}
    1 & 3 & 2 \\
    1 & 0 & 0 \\
    1 & 2 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 & 5 \\
    7 & 5 & 0 \\
    2 & 1 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1+0 & 3+0 & 2+5 \\
    1+7 & 0+5 & 0+0 \\
    1+2 & 2+1 & 2+1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 & 7 \\
    8 & 5 & 0 \\
    3 & 3 & 3
  \end{bmatrix}

Складаньне мностваў[рэдагаваць | рэдагаваць крыніцу]

Для мностваў апэрацыя аб'яднання задавальняе патрабаваньням камутатыўнасьці і асацыятыўнасьці, а таму зьяўляецца аналягам cкладаньня.

Складаньне элемэнтаў групаў[рэдагаваць | рэдагаваць крыніцу]

Увогуле, групавыя апэрацыі ня маюць ўласцівасьці асацыятыўнасьці. Групы, для якіх групавая апэрацыя камутатыўная, завуцца абэлевымі. Сярод абэлевых групаў вылучаюць адытыўная, у якіх групавую апэрацыю завуць складаньнем. Прыкладам такой групы можа быць група паваротаў гадзіннай стрэлкі.

Складаньне ў матэматычнай лёгіцы[рэдагаваць | рэдагаваць крыніцу]

Асноўны артыкул: Булева альгебра

У матэматычнай лёгіцы складаньню адпавядае апэрацыя АБО. Вынік гэтай апэрацыі ІСЬЦІНА калі хаця б адзін з апэрандаў мае значэньне ісьціны.

Апэрацыя складаньня ў булевай альгебры пазначаецца сымбалем  \or .

Лёгіка[рэдагаваць | рэдагаваць крыніцу]

Складаньне (лёгіка) гэта карэктная, простая форма аргумэнтацыі ў лёгіцы:

A.
Такім чынам, A або B.

або ў лёгіка-апэратарнай натацыі:

 A \vdash A \or B

Аргумэнт мае адну зыходную здагадку A. З праўдзівасьці A вынікае, што A або B зьяўляецца ісьцінай.

Арытмэтычныя апэрацыі
Symbol support vote.svg
Symbol oppose vote.svg
Symbol multiplication vote.svg
Symbol divide vote.svg
Складаньне Адыманьне Множаньне Дзяленьне
+ × ÷