Дыфэрэнцыйнае раўнаньне

Зьвесткі зь Вікіпэдыі — вольнай энцыкляпэдыі
Перайсьці да: навігацыі, пошуку

Дыфэрэнцыйнае раўнаньнераўнаньне, якое зьвязвае значэньне некаторай невядомай функцыі ў некаторым пункце і значэньне яе вытворных розных парадкаў у тым жа пункце. Дыфэрэнцыйнае раўнаньне ўтрымлівае ў сваім запісе невядомую функцыю, яе вытворныя і незалежныя зьменныя; аднак ня кожнае раўнаньне, якое зьмяшчае вытворныя невядомай функцыі, зьяўляецца дыфэрэнцыйным раўнаньнем. Напрыклад, \ f'(x)=f(f(x)) не зьяўляецца дыфэрэнцыйным раўнаньнем. Варта таксама адзначыць, што дыфэрэнцыйнае раўнаньне можа наогул не зьмяшчаць невядомую функцыю, некаторыя яе вытворныя і свабодныя зьменныя, але абавязкова зьмяшчаць прынамсі адну з вытворных. Дыфэрэнцыяльныя раўнаньні гуляюць важную ролю ў тэхніцы, фізыцы, эканоміцы й іншых дысцыплінах.

Дыфэрэнцыяльныя раўнаньні ўзьнікаюць у многіх галінах навукі й тэхнікі, у прыватнасьці, калі маюцца дэтэрмінаваныя адносіны з удзелам некаторых бесьперапынна зьмяняльных велічыняў і тэмпы іхных зьменаў у прасторы ці часе вядомыя. Гэтае маецца ў клясычнай мэханіцы, дзе рух цела апісваецца ягоным становішчам і хуткасьцю, у той час як значэньне часу зьмяняецца. Законы Ньютана дазваляюць з улікам месцазнаходжаньня, хуткасьці, паскарэньня й розных сілаў, якія дзейнічаюць на цела, выказаць гэтыя зьмены дынамічна праз дыфэрэнцыяльнае раўнаньне для невядомага становішча цела як функцыю часу. У некаторых выпадках, гэтае дыфэрэнцыяльнае раўнаньне, гэтак званыя раўнаньні руху, могуць быць вырашаны ў відавочным выглядзе.

Прыкладам мадэляваньня праблемы рэальнага сьвету з дапамогай дыфэрэнцыяльных раўнаньняў зьяўляецца вызначэньне хуткасьці падзеньня шара ў паветры, разглядаючы толькі гравітацыю й супраціў паветра. Паскарэньне шара да зямлі зьяўляецца паскарэньнем сілы цяжару за мінусам запаволеньня шара з-за супраціву паветра. Гравітацыя лічацца сталай велічыньнёй, а супраціў паветра можа быць змадэляваны як прапарцыйная велічыня да хуткасьці шара. Гэта азначае, што паскарэньне шара, якое зьяўляецца вытворным ад ягонай хуткасьці, залежыць ад хуткасьці, а хуткасьць залежыць ад часу. Знаходжаньне хуткасьці як функцыі часу ўключае ў сябе рашэньні дыфэрэнцыяльных раўнаньняў.

Вонкавыя спасылкі[рэдагаваць | рэдагаваць крыніцу]